您现在的位置:首页 > 技术资料 | ![]() |
基于DSP与双目CMOS 摄像头的数字图像处理系统 传统的数字图像处理通常采用图像采集卡,将模拟电视信号转换成数字信号,然后由PC机进行软处理。这样不仅不够灵活,处理能力也受到PC机和软件的限制。随着CMOS成像芯片工艺的改进和数字信号处理器功能的提升,使得数据量与计算量较大的图像硬处理成为可能。本文详细介绍了通过两路CMOS摄像头采集图像,以浮点DSP为核心处理器,采用60万门FPGA实现逻辑控制的数字图像采集处理系统的设计原理和实现方法。本系统所采用的芯片与器件,在保证性能的同时,兼顾低功耗,整个系统可以由1394线缆供电。 1 原理概述 整个系统的原理框图如图1所示。系统上电后,FPGA配置子板把配置文件加载到FPGA中。DSP由外部 FLASH引导,通过FPGA先设置1394接口芯片的内部寄存器,再通过I2C总线设置摄像头1、2的控制寄存器。FPGA提供摄像头的工作时序和图像序列的读写时序。云台在DSP的控制下可以上下左右调整,捕捉感兴趣的目标。8片1MB的SRAM作为两路摄像头的数据存储器,16MB的SDRAM则充当DSP的外部数据缓冲。处理后的图像既可以直接输出至LCD进行显示,也可以通过1394总线传送至PC机。
2系统设计 2.1 图像采集模块 该模块主要由两组CMOS摄像头和云台组成。该模块的接口信号见图2。
摄像头采用韩国现代的HV7131R和五层玻璃透镜。HV7131R采用0.3μm的CMOS工艺,有效像素30万,功耗低于90mW,具有曝光控制、增益控制和白平衡处理等功能,最大帧率30fps@VGA。通过标准的I2C接口设置HV7131R的内部寄存器,可以调节图像的曝光时间、分辨率、帧率、RGB增益、镜像等。HV7131R输出10位的RGB原始数据,本系统采用了其中的高8位。多层玻璃透镜可以滤除波长大于630nm的红外线,并采用超焦距对焦方式,最小成像距离为3cm。 2.2 图像处理模块 2.2.1 主要器件的选型 (3)对图像进行预处理,提高成像质量; (4)控制云台的转动,实现运动目标的跟踪。 FPGA在本系统中的作用有: (1)提供图像采集、存储与传输的工作时序; (2)协同DSP实现复杂的组合逻辑控制电路; (3)实现标准的VGA接口,外接LCD显示器。 基于以上要求,本系统采用TI公司的32位浮点DSP TMS320C6711B。6711B采用改进的哈佛总线结构,主频为150MHz,内部集成硬件乘法器和累加器,采用流水线VelociTITM甚长指令字(VLIW)指令,具有丰富的片上外设,并有专门针对数字信号处理的指令系统,运算能力可达1200MFLOPS,适用于计算量大、实时性高的数字图像处理领域。FPGA 则采用Altera公司Apex系列的EP20K600EBC652。EP20K600EBC652具有高速度(622MHz的数据速率)、高密度(有效逻辑60万门)、低噪声和低功耗的特点。有4个PLL、480个低电压差分信号(LVDS)的I/O口,工作电压为2.5V和1.8V。 2.2.2 图像的预处理 本系统的自动曝光控制和白平衡处理实现方法如下: 采集一帧RGB原始图像,在6711B中先计算出整幅图像亮度的均值m(Y);然后对图像做直方图均衡化,再计算出此时图像的亮度均值并作为一个阈值Yt。将m(Y)与Yt进行比较,如果m(Y) < Yt,则调大HV7131R的INT(Integration Time)寄存器的值以增加曝光时间;反之,减小曝光时间。白平衡的调节与此相似,根据原始图像与均衡化后的Cr和Cb的均值,通过HV7131R的RCG(Red Color Gain)、BCG(Blue Color Gain)调节红色、蓝色通道的增益。YCrCb和RGB的转换关系式为: Y=0.59G+0.31R+0.11B Cr=0.713×(R-Y) Cb=0.564×(B-Y) 其中,Y是亮度分量,Cr和Cb则是色差分量。 HV7131R的曝光时间范围为0~(224-1)个像素时钟周期,即0~1.34s@12.5MHz;增益范围一般为30~63。试验结果表明,经过5~10次的迭代就能取得较为理想的效果。上述过程示意图以及成像效果如图3和图4所示。
2.3 图像传输模块 2.3.1链路层控制器(LLC) 2.3.2 物理层控制器(PLC)
其中,1394总线驱动程序和端口驱动程序处理所有繁琐的底层通信,只需提供设备驱动程序。LLC和PLC的内部寄存器通过6711B设置,设备的发现与识别、驱动程序的安装、1394总线的初始化等也需要6711B的控制和响应。 本系统图像的最大数据量为640×480×30×2=18.4Mbps,1394a最高支持400Mbps的传输速率,图像实时传输不需要经过压缩。实际传输过程中,为确保每帧图像的完整,采用异步传输模式,图像序列之间加入了帧同步信号,使带宽利用率有所下降,最终的实测速率为20fps@640×480。该系统采用32位浮点DSP和大容量、多I/O口的高速FPGA,数据处理能力强,电路设计灵活,为今后运动目标检测与跟踪算法的研究提供了软硬件支持。
|